Answer:
![\text{LCD: 6x}^2(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/j93om2oqa7nshr139xhj9orwhz6hn26d9k.png)
Explanation:
*LCD is the lowest common multiple of the denominators of a set of fractions.
As a first step, factor each denominator as much it can be factored:
![\begin{gathered} x^2=x\cdot x \\ 6x^2+12x=6x(x+2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c9lku5yxidi3qv69jdq5qd298ohqc6120v.png)
Then, determine the maximum number of times they occur in any factorization to find the LCD:
![\text{LCD: 6x}^2(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/j93om2oqa7nshr139xhj9orwhz6hn26d9k.png)