Step-by-step explanation:
First, let's draw the quadrilateral. So:
Then, the distance d and slope m between two points with coordinates (x1, y1) and (x2, y2) can be calculated as:
![\begin{gathered} d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ m=(y_2-y_1)/(x_2-x_1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p7dh22dur7vtxptecmc4gwv1a8ktgzn9wg.png)
So, the distance and slope of AB where A is (-5,3) and B is (0, 6) are:
![\begin{gathered} d=\sqrt[]{(0-(-5))^2+(6-3)^2} \\ d=\sqrt[]{(0+5)^2+3^2} \\ d=\sqrt[]{34} \\ m=(6-3)/(0-(-5))=\frac{3}{0+5_{}}=(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vl5z0uw6kd57gtkcykd852c4k5yibflhwy.png)
The distance and slope of BC where B is (0,6) and C is (5, 3) are:
![\begin{gathered} d=\sqrt[]{(5-0)^2+(3-6)^2}=\sqrt[]{34} \\ m=(3-6)/(5-0)=-(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9rbwsf73mjihzxr25kyej2eetqug96f80i.png)
The distance and slope of CD where C is (5,3) and D is (0, 0) is:
![\begin{gathered} d=\sqrt[]{(0-5)^2+(0-3)^2}=\sqrt[]{34} \\ m=(0-3)/(0-5)=(-3)/(-5)=(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p3p1kh8wmw3dr1t5xyyxnuylzby5x57ush.png)
The distance and slope of AD where A is (-5,3) and D is (0, 0) are:
![\begin{gathered} d=\sqrt[]{(0-(-5))^2+(0-3)^2} \\ d=\sqrt[]{(0+5)^2+(3)^2}=\sqrt[]{34} \\ m=(0-3)/(0-(-5))=-(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3bhyhl45ykf8xmnju4ue598kd2evd640f3.png)
Therefore, the correct answers are:
Option 1 : Opposite sides (AB, CD, and BC, AD) have equal slopes making them parallel to each other, making ABCD a parallelogram.
Option 4: The distance of the sides AB, BC, CD, and AD are all congruent