140k views
2 votes
I need to ask for clarification on the process of this question. It says:Solve each system using a matrix. 4x - 12y = -16x + 4y = 4I understand the concept of creating a matrix from a system. But, beyond that, I am unclear on the process of how to solve it. Thank you in advance for your help. 4 -12 -16 4 4

1 Answer

4 votes

We have the following 2x2 system of equations:


\begin{pmatrix}4 & -12 \\ 6 & 4\end{pmatrix}\cdot\begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}-1 \\ 4\end{pmatrix}

and we need the vector solution


\begin{pmatrix}x \\ y\end{pmatrix}

Then, we need to find the inverse matrix of the 2x2 matrix on the left hand side. For any 2x2 matrix A,


A=\begin{pmatrix}a & b \\ c & d\end{pmatrix}

the inverse is given as.


A^(-1)=(1)/(\det A)\begin{pmatrix}d & -b \\ -c & a\end{pmatrix}

where detA denotes the determinant. Therefore, by means of the inverse matrix, the general solution for any 2x2 matrix will be


\begin{pmatrix}x \\ y\end{pmatrix}=A^(-1)\begin{pmatrix}z \\ w\end{pmatrix}

for any vector with entries z and w.

In our case, the determinat is


\begin{gathered} \det \begin{pmatrix}4 & -12 \\ 6 & 4\end{pmatrix}=4*4-(6)(-12) \\ \det \begin{pmatrix}4 & -12 \\ 6 & 4\end{pmatrix}=16+72 \\ \det \begin{pmatrix}4 & -12 \\ 6 & 4\end{pmatrix}=88 \end{gathered}

Therefore, the solution of our system will be


\begin{gathered} \begin{pmatrix}x \\ y\end{pmatrix}=A^(-1)\begin{pmatrix}-1 \\ 4\end{pmatrix} \\ \text{with } \\ A^(-1)=(1)/(88)\begin{pmatrix}4 & 12 \\ -6 & 4\end{pmatrix} \end{gathered}

Explicitly,


\begin{pmatrix}x \\ y\end{pmatrix}=(1)/(88)\begin{pmatrix}4 & 12 \\ -6 & 4\end{pmatrix}\cdot\begin{pmatrix}-1 \\ 4\end{pmatrix}

Now, lets make the product of the right hand side. It yields,


\begin{pmatrix}x \\ y\end{pmatrix}=(1)/(88)\begin{pmatrix}4(-1)+(12)(4) \\ (-6)(-1)+(4)(4)\end{pmatrix}

which gives


\begin{gathered} \begin{pmatrix}x \\ y\end{pmatrix}=(1)/(88)\begin{pmatrix}-4+48 \\ 6+16\end{pmatrix} \\ \begin{pmatrix}x \\ y\end{pmatrix}=(1)/(88)\begin{pmatrix}44 \\ 22\end{pmatrix} \end{gathered}

since 22x4=48 and 44x2=88, we have


\begin{pmatrix}x \\ y\end{pmatrix}=\begin{pmatrix}(1)/(2) \\ (1)/(4)\end{pmatrix}

Therefore, the solution of the system is


\begin{gathered} x=(1)/(2)=0.5 \\ \text{and} \\ y=(1)/(4)=0.25 \end{gathered}

User Taliana
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories