Given the zeros:
![\begin{gathered} x_1=4 \\ x_2=4-5i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sxpegbbggg2ne857ef9eym12hdm7p2y7ih.png)
You need to remember that the Factor Theorem states that, if, for a polynomial:
![f(a)=0](https://img.qammunity.org/2023/formulas/mathematics/college/nr06hgm45b3vqr3r2gbrb8pgvvtswxv5k3.png)
Then, this is a factor of the polynomial:
![(x-a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/udhk06a2ex67x4offumthkcpsqvbl71nan.png)
In this case, you know that:
![\begin{gathered} f(4)=0 \\ f(4-5i)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mlpkx9ic1crzywq2rvlt6b438qxqo9o9fp.png)
Therefore, you can determine that these are factors of the polynomial:
![\begin{gathered} (x-4) \\ (x-(4-5i)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6tk33p0rp8lqt1u2a435ahqek4sgd2o5nu.png)
By definition, Complex Conjugates have this form:
![(a+bi)(a-bi)](https://img.qammunity.org/2023/formulas/mathematics/college/1g90t3i2jc9njvvmqktevvsgphmcevf4rm.png)
Therefore, you can determine that this is also a factor:
![(x-(4+5i))](https://img.qammunity.org/2023/formulas/mathematics/college/dbtqy5a58ozqflimmbkpsxn5yt05t1loj4.png)
Now you can set up that the Factored Form of the polynomial is:
![(x-4)(x-(4-5i))(x-(4+5i))](https://img.qammunity.org/2023/formulas/mathematics/college/iy0m8w68v52a95dkw6ebop8eka88sqjkbk.png)
You need to expand the expression by applying the Distributive Property and applying:
![(a-b)(a+b)=a^2-b^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/hjpeozjrpf6sx411hrfrujuyqigmou3r0c.png)
Then:
![=(x-4)((x-4)^2-25i^2)](https://img.qammunity.org/2023/formulas/mathematics/college/nu1m7rubopbnhn2jt24lwva28x6ri5yfew.png)
By definition:
![(a-b)^2=a^2-2ab+b^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/wij5s4hl5c81m5e13tfkbmm8jk6ed6srgr.png)
Then, you get:
![=(x-4)(x^2-(2)(x)(4)+4^2-25i^2)](https://img.qammunity.org/2023/formulas/mathematics/college/487m89kx3m9nkv6eotrsry7jghl9nefjql.png)
![=(x-4)(x^2-8x+16-25i^2)](https://img.qammunity.org/2023/formulas/mathematics/college/twaa02p4frh0mz6gmn3njlo2ozqfatn2b9.png)
Knowing that:
![i^2=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/yq84fwq8mf651ezifio1x1gelf6zyjx7yj.png)
And adding the like terms, you get:
![=(x-4)(x^2-8x+16-25(-1))](https://img.qammunity.org/2023/formulas/mathematics/college/bq9hc9h2j925uirf3vxctgxy4mx8qilejf.png)
![=(x-4)(x^2-8x+16+25)](https://img.qammunity.org/2023/formulas/mathematics/college/eidp5sltnz4uh1djve6eyseung3d63dtab.png)
![=(x-4)(x^2-8x+41)](https://img.qammunity.org/2023/formulas/mathematics/college/5rnfx7af45b0e8thdl2mobet53599ib0mw.png)
Applying the Distributive Property and adding the like terms, you get:
![=(x^2)(x)-(x)(8x)+(x)(41)-(4)(x^2)+(4)(8x)-(4)(41)](https://img.qammunity.org/2023/formulas/mathematics/college/4u2kmubpgtm7mfgldbapy56rk98y7b89c0.png)
![=x^3-8x^2+41x-4x^2+32x-164](https://img.qammunity.org/2023/formulas/mathematics/college/mm2w01d0bl9xtlz2v2qafpzf6gl8vf5ep8.png)
![=x^3-12x^2+73x-164](https://img.qammunity.org/2023/formulas/mathematics/college/hehj36hcq9g9wkbmsk07a1q3hd5s6hkmmf.png)
Hence, the answer is: Second option.