Part A
we have the function
![S(t)=(1)/(2)t+2](https://img.qammunity.org/2023/formulas/mathematics/college/r8eplkwos3571n6dwm2u6rbzjuglh7gkzj.png)
Remember that
The volume of a cube is given by the formula
![V=S^3](https://img.qammunity.org/2023/formulas/mathematics/college/p51mvs4u16f586lw694rpt3az2sp133zue.png)
substitute the function S(t) in the formula of volume
![V(t)=((1)/(2)t+2)^3](https://img.qammunity.org/2023/formulas/mathematics/college/e767r2jp8ioxkemz8bkrguph5jsa0xiu9w.png)
Part B
Find the surface area as the function of time
we have
![SA(S)=6S^2](https://img.qammunity.org/2023/formulas/mathematics/college/wnk3vt42f5lj0owzlmuqkwwisega5nfrvl.png)
Find out (SAoS)(t)=SA(S(t))
so
![SA(S(t))=6((1)/(2)t+2)^2](https://img.qammunity.org/2023/formulas/mathematics/college/jf7vtm1009io4luym7jjm7sr0gmydxw4wk.png)
Part C
we have
SA=216 in2
using the function of Part B
![\begin{gathered} SA(t)=6((1)/(2)t+2)^2 \\ \\ 6((1)/(2)t+2)^2=216 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pm21y1pwbb59nvbfo7oxduzdjpuxbw3zw7.png)
Solve for t
![\begin{gathered} ((1)/(2)t+2)^2=(216)/(6) \\ \\ ((1)/(2)t+2)^2=36 \\ take\text{ square root on both sides} \\ \\ (1)/(2)t+2=\pm6 \\ \\ (1)/(2)t=-2\pm6 \\ \\ t=-4\pm12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dni6ug9psao6rp5vdt3bmhyt6gnbo946ft.png)
The values of t are
t=8 hours and t=-16 hours ( is not a solution because is a negative number)
therefore
The answer is 8 hours