The number of students in a homeroom is
![n=19](https://img.qammunity.org/2023/formulas/mathematics/college/mwhjjxg38taeo93v9zu3c1vxba8ptxy26x.png)
The number of posts to be chosen from is
![r=3](https://img.qammunity.org/2023/formulas/mathematics/college/ljw9zj7rrecsoy4uogr4r8kiojsi0t9vfb.png)
Concept:
The above selection can be done using the permutation formula below
![^nP_r=(n!)/((n-r)!)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gdpdqcyk4odbluf8cnit8vgom9giz385zb.png)
By substituting the values, we will have
![\begin{gathered} ^nP_r=(n!)/((n-r)!) \\ ^(19)P_3=(19!)/((19-3)!) \\ ^(19)P_3=(19!)/(16!) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u5c57xdqm8pq0peyzrmcu7eh5wxmlh43rk.png)
By expanding the factorial, we will have
![\begin{gathered} ^(19)P_3=(19!)/(16!) \\ ^(19)P_3=(19*18*17*16!)/(16!) \\ ^(19)P_3=19*18*17 \\ ^(19)P_3=5814\text{ ways} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2r0q6mg1jeyv9c3sfmkc0wvliqob1kra9f.png)
Hence,
The final answer is = 5,814 ways