To answer this question we will use the following expression to compute the probability that an event occurs:
![(FavorableOutcomes)/(TotalOutcomes).](https://img.qammunity.org/2023/formulas/mathematics/college/rl5cx5xe6v6nuanp1dj8esv5mzemfdborc.png)
Then, the probability that Rebecca selects one poodle is:
![(2)/(12).](https://img.qammunity.org/2023/formulas/mathematics/college/32kw7y5of5djsfjoo06edqo3g0vgwkgtws.png)
Simplifying the above result we get:
![(1)/(6).](https://img.qammunity.org/2023/formulas/mathematics/college/c5oxnnhjzpqo8ydxf2fudduaoyjemwbvc2.png)
Since the pet store replaces the puppy with a puppy of the same breed, then the probability that Aaron selects one poodle is:
![(2)/(12)=(1)/(6).](https://img.qammunity.org/2023/formulas/mathematics/college/elkmbzk9gxiw88rqdmq9qn6symzlg0akw8.png)
Therefore the probability that they both select a poodle is:
![(1)/(6)*(1)/(6)=(1)/(36).](https://img.qammunity.org/2023/formulas/mathematics/college/7etb17k9mx7mpo2sbkofw4oio7sk4qvgqi.png)
Answer:
![(1)/(36).](https://img.qammunity.org/2023/formulas/mathematics/college/of105j9rof22efj42y6iw9d023vf2fecig.png)