Given:
The function is given
![y=2sin(x+(\pi)/(4))+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/6hgo62xnua0wi8nd63dx0u7zd30lpzvxct.png)
Required:
Find the amplitude and graph the function.
Step-by-step explanation:
compare the equation with the equation
![y=asin(bx+c)+d](https://img.qammunity.org/2023/formulas/mathematics/high-school/tpqh06pz480xs8colk6vkh39ncdsoarmml.png)
Where a = amplitude
period =
![(2\pi)/(b)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bihmgx4qqclsjp15m5lbp623kkmxp1pxc3.png)
Phase shift =
![-(c)/(b)](https://img.qammunity.org/2023/formulas/mathematics/high-school/twfdp5kxd7gbjtxm5jcuyic7sncg5cetlh.png)
Vertical shife = d
Compare the given equation with the standard equation we get
a = 2, b = 1,
![c=(\pi)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bmqlh8pyllg36kb0h8c3amzw42gdsabe22.png)
d = 2
Period
![\begin{gathered} =(2\pi)/(b) \\ =(2\pi)/(1) \\ =2\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4cwwkx6r8i9h2dx8lrrosnwb81g8puvvtr.png)
Phase shift
![\begin{gathered} =-(c)/(b) \\ =-((\pi)/(4))/(1) \\ c=-(\pi)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2vopn5zm64cy5sd2n6xsjs03fqqc7jo7je.png)
Vertical shift d = 2