From the graph, we notice that the parabola has to be a horizontal parabola with vertex at:
![(-2,3),](https://img.qammunity.org/2023/formulas/mathematics/college/icktnh7hpc8fb5lxnt5othybcr8nl3nyej.png)
that opens to the right.
Recall that the standard form of a horizontal parabola is:
![\mleft(y-k\mright)^2=4p\mleft(x-h\mright)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/pomc9ak64yburu6ojl3jsbp2vtgix5g6at.png)
Where, (h,k) are the coordinates of the vertex, and p is the distance to the vertex to focus.
Substituting the vertex in the above equation, we get:
![(y-3)^2=4p(x-(-2))\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/n1x18dbgzvehx0oqcyxsmhe4tc127dtoee.png)
From the diagram, we get that:
![p=3.](https://img.qammunity.org/2023/formulas/mathematics/college/ezeiq5njvitoneizu7yaza21hdasfyhj3d.png)
Therefore:
![(y-3)^2=12(x+2)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/kvcv6wf4xg64fxi1bexvxkqasaxfjjtc1m.png)
Solving the above equation for x, we get:
![\begin{gathered} ((y-3)^2)/(12)=x+2, \\ x=((y-3)^2)/(12)-2. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a0tf9vndjj367m5op3tk5by3r89jv4qrum.png)
Answer:
![x=((y-3)^2)/(12)-2.](https://img.qammunity.org/2023/formulas/mathematics/college/gcbunjvm06lehrxql7wibn1j9twni3fwha.png)