We have:
Let x = 15% apple juice
Let y = 5% apple juice
If you need 10% of 10L of apple juice or one liter of pure whole apple juice. This is:
![x+y=10](https://img.qammunity.org/2023/formulas/mathematics/college/uu2ngrzj79x89eegq04pdry1wvzr10sobs.png)
One canned juice drink is 15% apple juice; another is 5% apple juice. This can be expressed by:
![0.15x+0.05y=1](https://img.qammunity.org/2023/formulas/mathematics/college/acz7aghc6pxw7deztet2ofajzlolmsnvjn.png)
Then we solve the system of equations:
From equation 1
![\begin{gathered} x+y-y=10-y \\ x=10-y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ruxazfouxdtt3wgxx8a5418q34hg4glvi.png)
Substitute x in the second equation:
![\begin{gathered} 0.15(10-y)+0.05y=1 \\ Simplify \\ 1.5-0.15y+0.05y=1 \\ 1.5-0.1y=1 \\ solve\text{ for y} \\ 1.5-0.1y+-1.5=1-1.5 \\ -0.1y=-0.5 \\ (-0.1y)/(-0.1)=(-0.5)/(-0.1) \\ y=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u5jyqlrhy0cnlr7r9nnbs1jy0jmh64x5q9.png)
Next, substitute y in x:
![x=10-5=5](https://img.qammunity.org/2023/formulas/mathematics/college/zf3l5b0z6f4g96iqy6330lo3i8bzfj52no.png)
Answer: We need 5L of each apple juice.