Answer:
x=4,8
Step-by-step explanation:
Given the function, h(x) defined below:
![h(x)=(x^(2)-4 x-12)/(x^(2)-12 x+32)](https://img.qammunity.org/2023/formulas/mathematics/college/rm7kcbkhex968re4uyp07eutu3gzx8eyns.png)
The values of x that are NOT in the domain of h are the values for which the denominator is 0, i.e.
![x^2-12x+32=0](https://img.qammunity.org/2023/formulas/mathematics/college/t5ff97unoctx8xv7ja9h20i09wgda5ni84.png)
Solve the quadratic equation for x:
![\begin{gathered} x^2-8x-4x+32=0 \\ x(x-8)-4(x-8)=0 \\ (x-4)(x-8)=0 \\ x-4=0\text{ or }x-8=0 \\ x=4\text{ or }x=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qqsw2mwty44abf7uvcj7x9n075c7q8govi.png)
The values of x that are NOT in the domain of h are: x=4,8