133k views
1 vote
Please answer KM, sin L, cos L, tan L, sin M, cos M, tan L.

Please answer KM, sin L, cos L, tan L, sin M, cos M, tan L.-example-1
User Lsblsb
by
5.4k points

1 Answer

2 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Find the value of KM

Using Pythagoras' Theorem,


\begin{gathered} hypotenuse^2=opposite^2+adjacent^2 \\ hypotenuse=34,adjacent=16,opposite=? \end{gathered}

By substitution,


\begin{gathered} 34^2=opposite^2+16^2 \\ opposite^2=34^2-16^2 \\ opposite^2=900 \\ opposite=√(900)=30 \end{gathered}

KM = 30

STEP 2: Find the required ratio

To get sin L:


\begin{gathered} \sin\theta=(opp)/(hyp) \\ By\text{ substitution,} \\ \sin L=(30)/(34)=(15)/(17) \end{gathered}

sin L = 15/17

To get cos L


\begin{gathered} \cos\theta=(adjacent)/(hypotenuse) \\ \cos L=(16)/(34)=(8)/(17) \end{gathered}

cos L = 8/17

To get tan L


\begin{gathered} \tan\theta=(opposite)/(adjacent) \\ By\text{ substitution,} \\ \tan L=(30)/(16)=(15)/(8) \end{gathered}

tan L = 15/8

STEP 3: Find the ratios for angle M

To get sin M


\begin{gathered} \sin\theta=(opp)/(hyp) \\ By\text{ substitution,} \\ \sin M=(16)/(34)=(8)/(17) \end{gathered}

sin M = 8/17

To get cos M


\begin{gathered} \cos\theta=(adj)/(hyp) \\ By\text{ substitution,} \\ \cos M=(30)/(34)=(15)/(17) \end{gathered}

cos M = 15/17

tan L has been done in Step 2

tan L = 15/8

Please answer KM, sin L, cos L, tan L, sin M, cos M, tan L.-example-1
Please answer KM, sin L, cos L, tan L, sin M, cos M, tan L.-example-2
User Bytes
by
5.7k points