we have the function
![f(x)=7x^5-9x^4-x^2](https://img.qammunity.org/2023/formulas/mathematics/college/rm8w3penkd7whhn6u75k3yik5cjcfq0lnq.png)
Simplify the expression
![f(x)=x^2(7x^3-9x^2-1)](https://img.qammunity.org/2023/formulas/mathematics/college/3z7qai1qhooqtnftjk1fi64or0a7rmvwt8.png)
Find out the value of f(x) at x=1
For x=1
![\begin{gathered} f(x)=7(1)^5-9(1)^4-(1)^2 \\ f(x)=7-9-1 \\ f(x)=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bau5hd1folytqxa4s3w4as6bmithjmktl0.png)
Find out the value of f(x) at x=2
For x=2
![\begin{gathered} f(x)=7(2)^5-9(2)^4-(2)^2 \\ f(x)=224-144-4 \\ f(x)=76 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ho4vevr2lr91t60psbw4jqacgnxxr47yi9.png)
Note that
For x=1 --------> f(x) is negative
For x=2 ------> f(x) is positive
that means
between the interval (1,2) the graph cross the x-axis
that means
The given function has at least one real zeros between x=1 and x=2