From the figure
We have the folloing points
![A(0,0),B(a,c),C(b,-),D(-,-)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/ggrs7gvy3scdktohb81mv9rkbxkl46gf07.png)
We need to find the missing points
Since the trapezoid is isosceles the side AB = Side CD
Considering coordinates B and C
let the missing point in C be z then
![\begin{gathered} B=(a,c) \\ C=(b,z) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i0cc4vlcs142mt7lyezi7t39f3tiekfdgl.png)
since Points B and C lie on the same y axis then
z = c.
Hence the coordinate C becomes
![C=(b,c)](https://img.qammunity.org/2023/formulas/mathematics/college/ceabs08wylqspnozm8dfe32v4szruo4j5e.png)
Next we need to find the missing points in D
let the missing x coordinate be x
let the missing y cordinate be y
Therefore
![D=(x,y)](https://img.qammunity.org/2023/formulas/mathematics/college/n1o8tt148wp9hy3dgei0sf4qsr4c2yt3ji.png)
From the Graph,
The point Dlie on the x axis hence the coordinate of y is 0
hence y = 0
Therefore point D will become
![D=(x,0)](https://img.qammunity.org/2023/formulas/mathematics/college/cutsv3crxuv0bzijw75cgfxz9wfawy6tyi.png)
Finally we are to find the value of x
Recall that the trapezoid is isosceles
hence
![\text{length AB = length CD}](https://img.qammunity.org/2023/formulas/mathematics/college/z82dvuffw1r9nhzi32j910xjdzqyqmstfw.png)
Applying the formula for distance between two points
The formula is give as
![\text{Distance =}\sqrt[]{(x_2-x_1)^2-(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/beshwx36vpz5acweuwl1xdfv8ssm7s6edq.png)
For points AB
A=(0,0), B = ( a,c)
Hence
![\begin{gathered} x_1=0,x_2=a \\ y_1=0,y_2=c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rko5eteqtfh5x6nb13kdizhsyihw72m2ah.png)
Therefore distance AB is
![\begin{gathered} AB=\sqrt[]{(a-0)^2+(c-0)^2} \\ AB=\sqrt[]{a^2+c^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kp9ih9od9rbp4j0uri1o6x520xeve9d63c.png)
For points CD
C = (b,c), D = (x,0)
Hence,
![\begin{gathered} x_1=b,x_2=x \\ y_1=c,y_2=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hwkrbxbi0b6p2azirjzwcw23rrt9u17ghz.png)
Therefore, distance CD is
![\begin{gathered} CD=\sqrt[]{(x-b)^2+(0-c)^2} \\ CD=\sqrt[]{(x-b)^2+c^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dim4lzwxk5rta53f8zxwgx4cu80zhgyz2d.png)
Recall distance AB = distance CD
Hence
![\begin{gathered} AB=CD \\ \sqrt[]{a^2+c^2}=\sqrt[]{(x-b)^2+c^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pv100c10kebvohb2ar0i7z8euk8m6gzuyb.png)
Simplifying further
we will get
![\begin{gathered} a^2+c^2=(x-b)^2+c^2 \\ a^2+c^2-c^2=(x-b)^2 \\ a^2=(x-b)^2 \\ \text{taking square root of both sides} \\ a=x-b \\ x=a+b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jrf2voaia0t37p7a97stk0gq34s5x1ufbb.png)
Therefore,
The coordinate of the point D is
![D=(a+b,0)](https://img.qammunity.org/2023/formulas/mathematics/college/cah5d52m4vx5fa9omsbbrxfxx31o6ah4x6.png)