The statement says two important facts:
The length is 8 more than double the width, and the area is equal to 960 ft^2. So rewrite these facts in equations:
Remember that the pool must be rectangular
![l=8+2w](https://img.qammunity.org/2023/formulas/mathematics/college/k0xugu9yfn1czn4h1qipp2pz7132o1xph4.png)
![A=l*w](https://img.qammunity.org/2023/formulas/mathematics/high-school/el9utfym4cd3hwl8jocr825spkohrcyvmc.png)
![l*w=960](https://img.qammunity.org/2023/formulas/mathematics/college/4ml3yi15kyrvafrau4kfku630ul1xlb7o0.png)
Put the variables on the same side, so reach the next two equations:
![l-2w=8](https://img.qammunity.org/2023/formulas/mathematics/college/18av1e6cp4vn3wohjayesmg71aznwwcnjm.png)
![l*w=960](https://img.qammunity.org/2023/formulas/mathematics/college/4ml3yi15kyrvafrau4kfku630ul1xlb7o0.png)
Now solve one for l, you can choose any equation and any variable, I will clear l from the first equation:
![l=8+2w](https://img.qammunity.org/2023/formulas/mathematics/college/k0xugu9yfn1czn4h1qipp2pz7132o1xph4.png)
Now replace in the second equation and solve
![(8+2w)*w=960](https://img.qammunity.org/2023/formulas/mathematics/college/akkkck8wn9sfcre1vmbet4mxwrioq2xw2f.png)
![2w^2+8w=960](https://img.qammunity.org/2023/formulas/mathematics/college/uw91lz2fkab9ak4i5sy3fviqdgj6tdcnpq.png)
![2w^2+8w-960=0](https://img.qammunity.org/2023/formulas/mathematics/college/itkljqywf8hoii1ga2l8ofcr6q4ynvdi70.png)
![w_(1,\:2)=(-8\pm √(8^2-4\cdot \:2\left(-960\right)))/(2\cdot \:2)](https://img.qammunity.org/2023/formulas/mathematics/college/htk0jisgdnp7bcb1wfmiv2xxb60wq5ri71.png)
![w_(1,\:2)=(-8\pm \:88)/(2\cdot \:2)](https://img.qammunity.org/2023/formulas/mathematics/college/qs4eh1an742u6vnbydlua068aoe3fnuu4r.png)
![w_(1,\:2)=(-8\pm \:88)/(2\cdot \:2)](https://img.qammunity.org/2023/formulas/mathematics/college/qs4eh1an742u6vnbydlua068aoe3fnuu4r.png)
![w_1=(-8+88)/(2\cdot \:2),\:w_2=(-8-88)/(2\cdot \:2)](https://img.qammunity.org/2023/formulas/mathematics/college/zhdzrxc8k5vbr235yjio61qageh71xcbhi.png)
![w=20,\:w=-24](https://img.qammunity.org/2023/formulas/mathematics/college/zcythi9r593q5pih1gd753zl7096k3p7lu.png)
We only choose the positive value, so the width is 20 ft
Now replace in the first equation to find the length:
![l=8+2(20)=8+40=48](https://img.qammunity.org/2023/formulas/mathematics/college/gw5ewpgff1wz7nvpq0b4xve5ywpk7i0ewh.png)
So the answer is:
length= 48ft
width=20ft