18.1k views
4 votes
Identify the following key features from the algebraic models for each of the functions given below. Try not to graph the functions. maximum and minimum values; domain and range. f(x)= -2.5 sin(x-35)+1

Identify the following key features from the algebraic models for each of the functions-example-1
User Yasheka
by
8.1k points

1 Answer

7 votes

Step-by-step explanation

We are given the function:


f(x)=-2.5sin(x-35^0)+1

We can start with the domain and range of the function:

The function given is a sine function

Domain of a function


\mathrm{The\:domain\:of\:a\:function\:is\:the\:set\:of\:input\:or\:argument\:values\:for\:which\:the\:function\:is\:real\:and\:defined}
\begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:The range of the function[tex]\mathrm{The\:set\:of\:values\:of\:the\:dependent\:variable\:for\:which\:a\:function\:is\:defined}
\begin{gathered} -1\le \sin \left(x-35^(\circ \:)\right)\le \:1 \\ -2.5\le \:-2.5\sin \left(x-35^(\circ \:)\right)\le \:2.5 \\ -1.5\le \:-2.5\sin \left(x-35^(\circ \:)\right)+1\le \:3.5 \\ \mathrm{Therefore\:the\:range\:is}:-1.5\le\:f\left(x\right)\le\:3.5 \end{gathered}

Thus, the range is


\begin{bmatrix}\mathrm{Solution:}\:&\:-1.5\le \:f\left(x\right)\le \:3.5\:\\ \:\mathrm{Interval\:Notation:}&\:\left[-1.5,\:3.5\right]\end{bmatrix}

Then we can now get the maximum and minimum values


\begin{gathered} \mathrm{Suppose\:that\:}x=c\mathrm{\:is\:a\:critical\:point\:of\:}f\left(x\right)\mathrm{\:then,\:} \\ \mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.} \\ \mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.} \\ \mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.} \end{gathered}

The critical points are


\begin{gathered} \mathrm{Plug\:the\:extreme\:point}\:x=-0.95993..+180^(\circ\:)+360^(\circ\:)n \\ \:\mathrm{into}\:-2.5\sin \left(x-35^(\circ \:)\right)+1\quad \Rightarrow \quad \:y=-1.5 \end{gathered}

So that the minimum will be


\mathrm{Minimum}\left(-0.95993...+180^(\circ\:)+360^(\circ\:)n,\:-1.5\right)

Also, the maximum is


\:\mathrm{Maximum}\left(5.32325...+360^(\circ\:)n,\:3.5\right)

User Serhii Holinei
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories