Answer:
Solution Given:
let ABC be an equilateral triangle with the vertex A(2,-1) and slope =-1.
and
∡ABC=∡BAC=∡ACB=60°
slope of BC
![[ m_1]=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/qd5w37k2jzoyx3usdwbxbnuvt1v1j8ei1j.png)
we have
=60°
Slope of AB=
![[ m_2]=a](https://img.qammunity.org/2023/formulas/mathematics/high-school/eg7k9igzozi5xib5ozo7y638uouflrrz60.png)
now
we have
angle between two lines is
![Tan\theta =±(m_1-m_2)/(1+m_1m_2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kczb6ed6w7020tlny33x2g2bt60eesdurv.png)
now substituting value
tan 60°= ±
![(-1-a)/(1+-1*a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1uh13ko80ikoad1wa6q0yfs5w3dw745onr.png)
doing criss-cross multiplication;
![(1-a)√(3)=±-(1+a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s0q0rx4q160vvcbevijxo17j3xnijyo2bq.png)
=±(1+a)
taking positive
![-a-a√(3)=1-√(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/118pxr17y8h4w0lfue0d0ulx8xkttpq5us.png)
![-a(1+√(3))=1-√(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/jbr4cbre6aw4gcj56mjzu7rzmna9ot20e0.png)
a=
taking negative
![a-a√(3)=-1-√(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kzvwnwf8xb1ojyue7jx7gjprq3vggd3xo6.png)
![a(1-√(3))=-1-√(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9gp3j8x8j5ttilndp1d54mxzwnxk1i4790.png)
a=
![(-(1+√(3)))/((1-√(3)))=(√(3)+1)/(-1+√(3))](https://img.qammunity.org/2023/formulas/mathematics/high-school/7r63pl03nayzpxea6lqv1zzlg6rs59a7dj.png)
Equation of a line when a =
![(√(3)-1)/(1+√(3))](https://img.qammunity.org/2023/formulas/mathematics/high-school/v9iw9arnmuvv2jiw8j2rjg2kaetwjxv8pu.png)
and passing through (2,-1),we have
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
y+1=
(x-2)
y=
-1
is a first side equation of line.
again
Equation of a line when a =
![(√(3)+1)/(-1+√(3))](https://img.qammunity.org/2023/formulas/mathematics/high-school/pf22m2cfmzmf147gr0jtk222u22t74pt6s.png)
and passing through (2,-1),we have
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
y+1=
(x-2)
y+1=
![(√(3)+1)/(-1+√(3))x -2(√(3)+1)/(-1+√(3))](https://img.qammunity.org/2023/formulas/mathematics/high-school/e5naqxv2vsn3spu4wqh0zud99iztcbh4a1.png)
y=
![(√(3)+1)/(-1+√(3))x -2(√(3)+1)/(-1+√(3))-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/i6y2txu7ychj005sqm0xhncmernpgccx5o.png)
is another equation of line.