Given:
![f(x)=x^3+3x](https://img.qammunity.org/2023/formulas/mathematics/college/wx66ed1foa40nqahh46h7464z4zxsc5u3l.png)
Let's determine the average rate of change with respect to x over the interval:
![2\leq x\leq4](https://img.qammunity.org/2023/formulas/mathematics/college/84nd68c1m29no4i1am9kzwmv4e3jdehjw8.png)
To find the average rate of change, apply the formula:
![avg=(f(b)-f(a))/(b-a)](https://img.qammunity.org/2023/formulas/mathematics/college/d1inutoxg4nh6wg298lv08rlb7pogq7sjm.png)
Where the closed interval is [a, b].
Thus, we have:
(a, b) ==> (2, 4)
Let's solve for f(2) and f(4).
We have:
![\begin{gathered} f(2)=2^3+3(2) \\ f(2)=8+6 \\ f(2)=14 \\ \\ \\ f(4)=4^3+3(4) \\ f(4)=64+12 \\ f(4)=76 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g2ddma9s0bero8h41n242iqexmce4l5bac.png)
To find the average rate of change where f(a) = 14 and f(b) = 76, we have:
![\begin{gathered} \text{avg}=(f(b)-f(a))/(b-a) \\ \\ \text{avg}=(76-14)/(4-2) \\ \\ \text{avg}=(62)/(2) \\ \\ \text{avg}=31 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d5kb6zcvy318219r3ep2s127tgasj2r4x9.png)
Therefore, the average rate of change of f(x) over the given interval is 31
ANSWER:
31