b) Given the demand equation
![\begin{gathered} p=-0.18x+360 \\ p\rightarrow price,x\rightarrow quantity \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fvp5bje4zpzonw0pb0npi58wewasguici9.png)
The revenue function is given by
![\begin{gathered} R(x)=px \\ \Rightarrow R(x)=-0.18x^2+360x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7r8ev9c25fefl00ssexs3pwqb3c0ns6heg.png)
R(x) corresponds to a parabola on the plane that opens downwards; therefore, it has a maximum.
To calculate the maximum, solve the equation R'(x)=0, as shown below
![\begin{gathered} R^(\prime)(x)=-0.18(2x)+360=-0.36x+360 \\ \Rightarrow-0.36x+360=0 \\ \Rightarrow0.36x=360 \\ \Rightarrow x=1000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rpipbbcc3pd4rstd6yzcn0i4y6a4akn0ea.png)
The value of x that maximizes the revenue is x=1000.
As for the maximum value of the revenue, find R(1000),
![R(1000)=-0.18(1000)^2+360(1000)=180000](https://img.qammunity.org/2023/formulas/mathematics/college/nkhn64sqrcdhppjq0ulnq09ic2nhzrx160.png)
The maximum revenue is $180000
c) Find the corresponding price (p) for x=1000,
![p(1000)=-0.18(1000)+360=180](https://img.qammunity.org/2023/formulas/mathematics/college/nt7cr1vxi84zy3of1qx26pn7rf75th9g59.png)
The price that maximizes revenue is $180