217k views
4 votes
How can I use the figure to find the exact value of sin 2theta?

How can I use the figure to find the exact value of sin 2theta?-example-1

1 Answer

1 vote

Answer:

sin(2θ) = 24/25

Explanation:

In order to find the value of sin 2θ, first, recall the double-angle formula for sine.


\sin 2\theta=2\sin \theta\cos \theta

From the right-triangle:


\begin{gathered} \sin \theta=\frac{\text{Opposite}}{\text{Hypotenuse}}=(3)/(5) \\ \cos \theta=\frac{\text{Adjacent}}{\text{Hypotenuse}}=(4)/(5) \end{gathered}

Substitute these values into the double-angle formula obtained earlier.


\begin{gathered} \sin 2\theta=2\sin \theta\cos \theta \\ =2*(3)/(5)*(4)/(5) \\ =(24)/(25) \end{gathered}

The exact value of sin(2θ) is 24/25.

User Lucienne
by
4.6k points