We We SOLUTION
Given the question in the image tab, the following are the solution steps to get the quadratic functions
Step 1: Write the zeroes and the y-intercept
![\begin{gathered} \text{roots}=\text{zeroes}=-1\text{ and 5} \\ (x,y)=(0,3),\text{ y-intercept=3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3j4laveeyv8mr1vhmyy77wp954hn24nhdb.png)
Step 2: Write the general factored form formula
![f(x)=a(x-r_1)(x-r_2)](https://img.qammunity.org/2023/formulas/mathematics/college/6o0z0lrq6yye278uuv5ukw85swx8o9mx1q.png)
Step 3: Get the value of a using the zeroes and the points written in step 1
![\begin{gathered} f(x)=a(x-(-1))(x-5) \\ f(x)=a(x+1)(x-5) \\ \operatorname{Re}call\text{ that x=0 and y=3} \\ 3=a(0+1)(0-5) \\ 3=a(1)(-5) \\ 3=-5a \\ a=-(3)/(5) \end{gathered}]()
Step 4: Write the quadratic function for the system using the formula in step 2
![f(x)=-(3)/(5)(x+1)(x-5)](https://img.qammunity.org/2023/formulas/mathematics/college/29zlgacyk2xn7d240xqc69kkidiwmlcqnn.png)
Hence, the quadratic function with the given zeroes and y-intercept in a reduced fraction form will be:
![f(x)=-(3)/(5)(x+1)(x-5)](https://img.qammunity.org/2023/formulas/mathematics/college/29zlgacyk2xn7d240xqc69kkidiwmlcqnn.png)