To find the perimeter of a triangle you add each of its 3 sides.
Find the measure of each side with the next formula to find the distance between two points:
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)
For the given triangle:
Side between (3,7) and (3,-1)
![\begin{gathered} d=\sqrt[]{(3-3)^2+(-1-7)^2} \\ \\ d=\sqrt[]{(-8)^2}=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/unw1zhc5ngo51jdyhnwrskvearwo51nijs.png)
Side between (3,-1) and (10,-1)
![\begin{gathered} d=\sqrt[]{(10-3)^2+(-1-(-1))^2} \\ \\ d=\sqrt[]{(7)^2}=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jo27a6jdymkses6cw11g335mpqs2a7xgm2.png)
Side between (3,7) and (10,-1)
![\begin{gathered} d=\sqrt[]{(10-3)^2+(-1-7)^2} \\ \\ d=\sqrt[]{7^2+(-8)^2} \\ \\ d=\sqrt[]{49+64} \\ \\ d=\sqrt[]{113}\approx10.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vrfbat35s1rg8fxo558efjzylyudose6x7.png)
Then, the given triangle have sides of: 8 units, 7units and 10.6 units.
Perimeter: 25.6 units
