23.5k views
0 votes
Sqrt(-28)write in terms of i

1 Answer

4 votes

Answer:


\sqrt[]{-28}=2\sqrt[]{7}i

Step-by-step explanation:

The square roots of negative numbers do not exist on the number line.

This is the reason why there exist, Complex Numbers.

Under this, we have the definition:


\sqrt[]{-1}=i

Given


\sqrt[]{-28}

We can rewrite this as:


\begin{gathered} \sqrt[]{-1*28} \\ OR \\ \sqrt[]{-1}*\sqrt[]{28} \\ =\sqrt[]{-1}*\sqrt[]{4*7} \\ \\ =\sqrt[]{-1}*\sqrt[]{4}*\sqrt[]{7} \\ =i*2*\sqrt[]{7} \\ \\ =2\sqrt[]{7}i \end{gathered}

User Alex Marple
by
3.3k points