We can get the equation of the line by using the Point-Slope Formula.
The Point-Slope Formula is used when we have one point on the line that isn't the y-intercept and the slope. It is given as:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
where:
![\begin{gathered} m=\text{ slope} \\ (x_1,y_1)=\text{ point on the line} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kdewoef42dn84sq5vazq6a5iqvz09udiu6.png)
Parameters:
The point is given in the question to be:
![(x_1,y_1)=(-4,15)](https://img.qammunity.org/2023/formulas/mathematics/college/ruzpzs3b6njk4dwnenr8ghk8j4s0m45i7t.png)
The slope: We are given that the line is parallel to the line
![y=-2x+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/mu4o6jzbtomonljpd3dhkx7olgciqacik9.png)
Comparing with the Slope-Intercept form of a straight line given as:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
where m is the slope, we have the slope of the line to be:
![m=-2](https://img.qammunity.org/2023/formulas/mathematics/college/3g59cwdofsyik4bse166lqvk81jf6t6h0t.png)
Formula:
We can now input these into the formula and we get the equation below:
![\begin{gathered} y-15=-2(x-\lbrack-4\rbrack) \\ y-15=-2(x+4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/on8gnqjcny79alj9i5vrswmp5wyb4czwis.png)
Hence, we can rewrite the equation to be:
![\begin{gathered} y-15=-2x-8 \\ y=-2x-8+15 \\ y=-2x+7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j74o9py3x8nwjjha871z00zyu67p0nyvj5.png)
The answer is:
![y=-2x+7](https://img.qammunity.org/2023/formulas/mathematics/college/gh53zjhomy2ecrmkck728hdxyaxrokx7ia.png)