139k views
0 votes
Compare: 0.06 x 10-1 O 10-2A>B)

Compare: 0.06 x 10-1 O 10-2A>B)-example-1
User Finuka
by
3.2k points

1 Answer

4 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given question.


0.06*10^(-1)O\text{ }0.6*10^(-2)

STEP 2: Divide the expression into two parts and solve each parts to get their results


\begin{gathered} 0.06*10^(-1)\Rightarrow\text{?} \\ 0.6*10^(-2)\Rightarrow\text{?} \end{gathered}

STEP 3: Solve the first expression


\begin{gathered} 0.06*10^(-1) \\ 0.06*10^(-1) \\ =0.06*(1)/(10) \\ \mathrm{Multiply\: fractions}\colon\quad \: a*(b)/(c)=(a\:*\:b)/(c) \\ =(1*\:0.06)/(10) \\ \mathrm{Multiply\: the\: numbers\colon}\: 1*\: 0.06=0.06 \\ =(0.06)/(10) \\ \mathrm{Divide\: the\: numbers\colon}\: (0.06)/(10)=0.006 \\ =0.006 \end{gathered}

STEP 4: Solve the second expression


\begin{gathered} 0.6*10^(-2) \\ \mathrm{Apply\: exponent\: rule}\colon\quad \: a^(-b)=(1)/(a^b) \\ \mathrm{Multiply\: fractions}\colon\quad \: a*(b)/(c)=(a\:*\:b)/(c) \\ =(1*\:0.6)/(10^2) \\ \mathrm{Multiply\: the\: numbers\colon}\: 1*\: 0.6=0.6 \\ =(0.6)/(10^2) \\ 10^2=100 \\ =(0.6)/(100) \\ \mathrm{Divide\: the\: numbers\colon}\: (0.6)/(100)=0.006 \\ =0.006 \end{gathered}

STEP 5: Compare the two results from the simplified expressions


\begin{gathered} \text{0}.006\Rightarrow0.006 \\ It\text{ can be se}en\text{ that the expression on the right hand side is equal to the expression on the left hand side} \end{gathered}

Hence,


0.06*10^(-1)=\text{ }0.6*10^(-2)

Equal sign(=)

User Mitrakov Artem
by
3.0k points