We will solve as follows:
*We will find the surface area by finding the areas of the smaller rectangles and adding them up, that is:
*Area of top rectangle:
![A_1=5\cdot2\Rightarrow A_1=10](https://img.qammunity.org/2023/formulas/mathematics/college/een6ysgqonuqi6mtanu8fsudvuuc23zssq.png)
*Area of the two smaller rectangles on the side
![A_2=2\cdot2\cdot3\Rightarrow A_2=12](https://img.qammunity.org/2023/formulas/mathematics/college/wb1qccs5aol6ws1z73r6jw7mq83eyf9vhx.png)
*Area of the rectangle in the middle:
![A_3=3\cdot5\Rightarrow A_3=15](https://img.qammunity.org/2023/formulas/mathematics/college/jebma0x9yy28pdjdm9yaq9113gm09kzlg2.png)
*Area of the second rectangle [Bottom up]:
![A_4=2\cdot5\Rightarrow A_4=10](https://img.qammunity.org/2023/formulas/mathematics/college/dwyhpi5fyfxtlmdedm61einv65uhh75hpm.png)
*Area of the rectangle on the bottom:
![A_5=3\cdot5\Rightarrow A_5=15](https://img.qammunity.org/2023/formulas/mathematics/college/pjifejfaq5dlqje55qj0agado5ku40r8ho.png)
**Now, the surface area will be:
![A_S=A_1+A_2+A_3+A_4+A_5\Rightarrow A_S=10+12+15+10+15](https://img.qammunity.org/2023/formulas/mathematics/college/8lxcs7t2fcq0rxdhyhc4kvyy01ei53chog.png)
![\Rightarrow A_S=62](https://img.qammunity.org/2023/formulas/mathematics/college/o56xe6q6srg9ru9bww61hazd01lnexk8g0.png)
So, the surface area is 62 squared inches.