203k views
4 votes
I’m not sure how to solve 3d. College calculus 1

I’m not sure how to solve 3d. College calculus 1-example-1

2 Answers

2 votes

Answer:

See below

Explanation:

f(x) = ( x^2 + 5)^3 f(0) = 5^3 = 125

(x^2+5)^3 = x^6 + 15x^4 + 75 x^2 + 125

so you have (x^6 + 15x^4 + 75x^2 + 125 - 125) /x

= x^5 + 15x^3 + 75x = x ( x^4 + 15x^2 + 75)

3 votes

Step 1

Given;


f(x)=(x^2+5)^3

Required; To simplify


(f(x)-f(0))/(x),\text{ x}\\e0

Step 2


((x^2+5)^3-(0^2+5)^3)/(x)
\mleft(a+b\mright)^3=a^3+3a^2b+3ab^2+b^3---(apply\text{ p}\operatorname{erf}ect\text{ cube formula)}
(x^2+5)^3=(x^2)^3+3(x^2)^2(5)+3x^2(5^2)+5^3
(x^2+5)^3=x^6+15x^4+75x^2+125
((x^6+15x^4+75x^2+125)-125)/(x)
\begin{gathered} (x^6+15x^4+75x^2+125-125)/(x) \\ (x^6+15x^4+75x^2)/(x) \\ (f(x)-f(0))/(x)=x^5+15x^3+75x \end{gathered}

Hence if we factorize we get;


x(x^4+15x^2+75)

Therefore;


(f(x)-f(0))/(x)=x(x^4+15x^2+75)

User NtsDK
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories