221k views
3 votes
Find the area of a shaded region shown below, which was formed by cutting an isosceles trapezoid out of the top half of a rectangle. The width of the rectangle is 32 in, the height of the rectangle in 24 in. The leg of the isosceles trapezoid is 15 in.

Find the area of a shaded region shown below, which was formed by cutting an isosceles-example-1
User Jscherman
by
8.1k points

1 Answer

3 votes

Step 1: Redraw the diagram and label it.

From the figure, the hypotenuse of triangles A and B is 15 in and the height is 12 in. We can apply the Pythagoras theorem to find the base.

Let base of the triangle A and B be the adjacent.

Opposite = 12

Adjacent = ?

Hypotenuse = 15


\begin{gathered} Next,\text{ apply the Pythagoras theorem to find the adjacent.} \\ \text{Opposite}^2+Adjacent^2=Hypotenuse^2 \\ 12^2+Adj^2=15^2 \\ 144+Adj^2\text{ = 225} \\ \text{Collect like terms.} \\ \text{Adj}^2\text{ = 225 - 144} \\ \text{Adj}^2\text{ = 81} \\ F\text{ ind the square root of both sides.} \\ \sqrt[]{Adj^2\text{ }}=\text{ }\sqrt[]{81} \\ \text{Adj = 9 in} \end{gathered}

The area of the shaded region = Area of A + Area of B + Area of C


\begin{gathered} \text{Area of A = }\frac{Base\text{ x Heigth}}{2} \\ \text{Base = 9} \\ \text{Height = 1}2 \\ \text{Area of A = }\frac{9\text{ x 12}}{2} \\ =\text{ }(108)/(2) \\ =54in^2 \\ \text{Area of B = }\frac{Base\text{ x Height}}{2} \\ =\text{ }\frac{9\text{ x 12}}{2} \\ =\text{ }(108)/(2) \\ \text{= 54 in}^2 \end{gathered}
\begin{gathered} \text{Area of rectangle C = Length }*\text{ Breadth} \\ Lenght\text{ = 32} \\ \text{Breadth = 12} \\ \text{Area of C = 32 x 12} \\ =384in^2 \end{gathered}

Therefore,

Area of the shaded region = 54 + 54 + 384 = 492 inches square

Final answer

Area of the shaded region = 492 inches square

Find the area of a shaded region shown below, which was formed by cutting an isosceles-example-1
User Mr Boss
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories