Given the coordinates of the following locations
![\begin{gathered} Q(4,-2) \\ R(2,-4) \\ S(0,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5v48iaw5fkrjjfj20wvvwz8f2bc4yqtr0n.png)
From the question we have that the distance of the point are equal so we will have;
![(x-4)^2+(y+2)^2=(x-2)^2+(y+4)^2=(x-0)^2+(y-2)^2](https://img.qammunity.org/2023/formulas/mathematics/college/nfmf03jwt060ab5oycu5sw1qidzjxkg3yp.png)
Solving equation 1 and 3 simultaneously we will have
![\begin{gathered} x^2-8x+16+y^2+4y+4=x^2+y^2-4y+4_{} \\ -8x+8y=-16 \\ \text{Divide through by 8} \\ -x+y=-2 \\ x=y+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qmcsbxzm4lj8pmisxi8jfaww60oqs45xwt.png)
Solving equation 2 and 3 simultaneously we will have
![\begin{gathered} x^2-4x+4+y^2+8y+16=x^2+y^2-4y+4 \\ -4x+12y=-16 \\ \text{Divide through by 4} \\ -x+3y=-4 \\ x=3y+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eg1q2dj8jwcas4d3kznc59lcyleeymyiyj.png)
Thus , to solve for y we have;
![\begin{gathered} y+2=3y+4 \\ 2-4=3y-y \\ -2=2y \\ y=(-2)/(2)=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hltc4tbejyhua0a4ljo1sahclbnvqjtvb1.png)
Substitute y to find x
![\begin{gathered} x=y+2 \\ x=-1+2=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2hp5okwlv7ov35ur5wohm1tzycy91nmons.png)
Hence the coordinates of the center of the merry-go-round is ( 1, - 1)
The second option is the correct option