11.
Given:
![y=x^2](https://img.qammunity.org/2023/formulas/mathematics/college/1ch5n55tacdusoaz2xqjwppl7gqbo47w29.png)
Differentiate with respect to x, we get
![(dy)/(dx)=2x](https://img.qammunity.org/2023/formulas/mathematics/college/28npjwd1drkizbpo1t60hardxpril1e2mg.png)
The given point is (3,9)
Substitute x=3 in the derivative, we get
![(dy)/(dx)=2**3=6](https://img.qammunity.org/2023/formulas/mathematics/college/9oablfhxbwnxft0lgbwd59k9mlfx6vadet.png)
Hence the slope is 3.
12.
Given:
![y=x^2+4](https://img.qammunity.org/2023/formulas/mathematics/college/f1iaw31wfmxs42ny8yk5mq8cdc2nsb8ysq.png)
Differentiate with respect to x, we get
![(dy)/(dx)=2x+0](https://img.qammunity.org/2023/formulas/mathematics/college/6cp7ujcbfrnj0xx909sbglh7qi2r9iqfro.png)
The given point is (0,4)
Substitute x=0 in the derivative, we get
![(dy)/(dx)=2(0)+0=0](https://img.qammunity.org/2023/formulas/mathematics/college/jubzystskn9g2frrzvd1wdomc67umwpweu.png)
Hence the slope is 0.