Given
![2\sec ^2(x)-13\tan (x)=-13](https://img.qammunity.org/2023/formulas/mathematics/college/8n7dzvd73dfov1uj0u9sv7qx05c2sbbel4.png)
Add 13 to both sides
![\begin{gathered} 2\sec ^2(x)-13\tan (x)+13=-13+13 \\ 2\sec ^2(x)-13\tan (x)+13=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1abxrl211g1bghzn5sq8g47zvk4wnbugnk.png)
We have that
![\sec ^2(x)=1+\tan ^2(x)](https://img.qammunity.org/2023/formulas/mathematics/college/m9otztzuwsrx4kda6wdo4s6jb4ftpoxty6.png)
So, substitute in the above equation
![2(1+\tan ^2(x))-13\tan (x)+13=0](https://img.qammunity.org/2023/formulas/mathematics/college/rx2s4r2o3phgydodn623p79n8sqyd8uyb8.png)
Simplify
![\begin{gathered} 2+2\tan ^2(x)-13\tan (x)+13=0 \\ 15+2\tan ^2(x)-13\tan (x)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/li976omdv8hpekz7c3dnumgzaj0cgrw0i9.png)
Reordering the equation
![2\tan ^2(x)-13\tan (x)+15=0](https://img.qammunity.org/2023/formulas/mathematics/college/j2xul0tzdg1birrj387llvmujekonxuubd.png)
We get a quadratic equation, then solve by factoring
![(2\tan (x)-3)(\tan (x)-5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/8l5gpzmbtdr40yz4beznqev5fk3b1w57xu.png)
Separate the solutions
![\begin{gathered} 2\tan (x)-3=0 \\ 2\tan (x)-3+3=0+3 \\ 2\tan (x)=3 \\ (2\tan (x))/(2)=(3)/(2) \\ \tan (x)=(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/buol2gmdrn8gilgexbhynnyb8tsjngzr02.png)
And
![\begin{gathered} \tan (x)-5=0 \\ \tan (x)-5+5=0+5 \\ \tan (x)=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sc4mwt209q7yv8qolcxrmmh30lv0g1wgxv.png)
Next, solve for x for each solution
![\begin{gathered} \tan (x)=(3)/(2) \\ x=\tan ^(-1)((3)/(2)) \\ x=56.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xzm6gve7ugvwm8kigng3txuhvlhl99rzfc.png)
And
![\begin{gathered} \tan (x)=5 \\ x=\tan ^(-1)(5) \\ x=78.7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/emfu1uggvzr9rlq257jnac1law6brm7xdh.png)
Answer:
x = 56.3° and x = 78.7°