Let's draw the scenario to better understand the details.
To be able to determine the height of the flagpole, let's create two different triangles with 29.5° and 39° 45' angle. The two triangles have one common base at 80 Feet, yet have different heights at H+h and H respectively.
Where,
H = Height of the library
h = Height of the flag
The two triangles are proportional at a common base, thus, let's generate this expression using the Law of Sines:
![(H+h)/(\sin(39\degree45^(\prime)))\text{ = }(H)/(\sin(29.5^(\circ)))](https://img.qammunity.org/2023/formulas/mathematics/college/jqw95queq9m34me7y66eq23e9tm83pwo2l.png)
Let's simplify,
![(H+h)/(\sin(39\degree45^(\prime)))\text{ = }(H)/(\sin(29.5^(\circ)))\text{ }\rightarrow\text{ (}H+h)(\sin (29.5^(\circ)))\text{ = (H)(}\sin (39\degree45^(\prime)))](https://img.qammunity.org/2023/formulas/mathematics/college/q8rx7doy1jlhftnpamtg2sh3uyec3tqyg0.png)
![H\sin (29.5^(\circ))\text{ + h}\sin (29.5^(\circ))\text{ = H}\sin (39\degree45^(\prime))\text{ ; but }29.5^(\circ)=29^(\circ)30^(\prime)](https://img.qammunity.org/2023/formulas/mathematics/college/1wdske40xd6cborzgmkomyjol01zrra952.png)
![H\sin (29^(\circ)30^(\prime))\text{ + h}\sin (29^(\circ)30^(\prime))\text{ = H}\sin (39\degree45^(\prime))](https://img.qammunity.org/2023/formulas/mathematics/college/beaf99u6mm1u0h0mbvb407grcsn5vnhryh.png)
![\text{h}\sin (29^(\circ)30^(\prime))\text{ = H}\sin (39\degree45^(\prime))\text{ - }H\sin (29^(\circ)30^(\prime))](https://img.qammunity.org/2023/formulas/mathematics/college/pqiip7jc0aumzp1h4padisamgh7moibjnp.png)
![\text{ h(}0.4924235601)\text{ = H(0.63943900198) -H}(0.4924235601)](https://img.qammunity.org/2023/formulas/mathematics/college/yemb6640voj1i2ivraxnotlhhzkpkmukd9.png)
![\text{ h(}0.4924235601)\text{ = H(0.14701544188)}](https://img.qammunity.org/2023/formulas/mathematics/college/fx0jxc1h6rph2en8lbtkz5f66uv218cjkz.png)
![undefined]()