The equation is
![y=x^2+4x-5](https://img.qammunity.org/2023/formulas/mathematics/college/ha3bbyijc0gnp8dwnlk9z9e5jazjcobgty.png)
We can already find the vertex using the vertex formulas
![\begin{gathered} x_V=-(b)/(2a)=(-4)/(2)=-2 \\ \\ \\ y_V=-(\Delta)/(4a)=-(b^2-4ac)/(4a)=-(16+20)/(4)=-(36)/(4)=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mhb7tk7q17fbeu9om2dv9bb1840rqyvnk6.png)
Therefore the vertex is
![(x_V,y_V)=(-2,-9)](https://img.qammunity.org/2023/formulas/mathematics/college/uuzmnf5zrnwxza9e8lyz7uvycdjnt01qdr.png)
Now we have the vertex we also have the axis of symmetry and the max/min of the function, in that case, it's a minimum because a > 0. Therefore
![\begin{gathered} \text{ axis of symmetry = }x_V=-2 \\ \\ \min\lbrace y\rbrace=y_V=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o59dimnpntw0gn1qsa8yd38n44umm07id8.png)
We can find the x-intercept easily
![\begin{gathered} x=(-b\pm√(b^2-4ac))/(2a) \\ \\ x=(-4\pm√(4^2+4\cdot5))/(2) \\ \\ x=(-4\pm√(16+20))/(2) \\ \\ x=(-4\pm√(36))/(2) \\ \\ x=(-4\pm6)/(2) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n2mbm2wfb7jmf8lj8dk0d9u85qowntwvem.png)
Hence
![\begin{gathered} x=(-4\pm6)/(2)=-2\pm3 \\ \\ x_1=-1 \\ x_2=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/41rsravxaf4ynzs3b2w03e6u237ff3q9pc.png)
The y-intercept is just the c value, then it's -5.
Now we can do the domain, there's no restriction for parabolas in the domain, then
![\text{ domain = }\mathbb{R}](https://img.qammunity.org/2023/formulas/mathematics/college/mp9qqtrtyukyohvwx1xz0vvdcdqvfm6kax.png)
And the range is
![\text{ range = \lbrack}y_V,+\infty)=[-9,+\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/5n16cmmnk72z24vep4s2klx4hquzw1buec.png)