To solve this question, we would use cosine rule which is given as
![a^2=b^2+c^2-2bc\cos A](https://img.qammunity.org/2023/formulas/mathematics/college/skeau9ab3o6bvr1rywsutrp9q4x3jotvls.png)
Our values have been defined for us and we will proceed to evaluate
![\begin{gathered} a^2=4^2+10^2-2(4)(10)\cos 41 \\ a^2=16+100-80\cos 41 \\ a^2=116-60.376 \\ a^2=55.624 \\ \text{take the square root of both sides} \\ a=\sqrt[]{55.624} \\ a=7.458\approx7.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/frd1btj3b4c3x8e2ortgjrcaztok86sfo2.png)
From the calculations above, the value of the missing side a is 7.5 units
To find angle B,
we can use sine rule
![\begin{gathered} (a)/(\sin A)=(b)/(\sin B) \\ (7.5)/(\sin 41)=(4)/(\sin B) \\ \sin B=(4*\sin 41)/(7.5) \\ \sin B=0.3498 \\ B=\sin ^(-1)0.3498 \\ B=20.5^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4pv5d9en7g4uqcnr09758f3orf30vg04mf.png)
We can still approach C with sine rule or sum of angle in a triangle
![\begin{gathered} A+B+C=180 \\ 41+20.5+C=180 \\ c=118.5^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nyde728fpvw03jw7d1c0zb4a6zbnv12pm2.png)
From the calculations above, the value of a = 7.5 , B = 22⁰ and C = 118.5⁰ respectively which is option B