Complex numbers can be written in two forms:
![\begin{gathered} z=a+b\cdot i \\ z=r\cdot e^(i\theta) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l5cedcic8bu1t1lr6pw8vhdkb199k7uqdm.png)
Where a and b are known as the real and the imaginary part and r and theta are the magnitude and the angle of the number. In this case we are given these last two quantities and we have to find a and b. One way to do this is recalling an important property of the exponential expression above:
![e^(i\theta)=\cos \theta+i\sin \theta](https://img.qammunity.org/2023/formulas/mathematics/college/f6iw0vhjd2dkm99r1a6141dp7hpgk34c9c.png)
Then the exponential form of a number is equal to:
![z=r\cdot e^(i\theta)=r\cdot(\cos \theta+i\sin \theta)=r\cos \theta+i\cdot r\sin \theta](https://img.qammunity.org/2023/formulas/mathematics/college/9s9rr758zp0eb28kirem6p86wxzhkaf85d.png)
And since we are talking about the same number then this expression must be equal to that given by a and b:
![a+i\cdot b=r\cos \theta+i\cdot r\sin \theta](https://img.qammunity.org/2023/formulas/mathematics/college/kiyep63oxb0brea6yf8raq7osd2herpqw7.png)
Equalizing terms without i and those with i we have two equations:
![\begin{gathered} a=r\cos \theta \\ b=r\sin \theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sxwsqw377cr2xbv21zn69xp74xfwtlcgxw.png)
Now let's use the data from the exercise:
![\begin{gathered} r=\lvert z_1\rvert=2 \\ \theta=\theta_1=49^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sfrz88ot2j26tow1pkd7gfshecdgmixxqm.png)
Then we have:
![\begin{gathered} a=2\cdot\cos 49^(\circ) \\ b=2\cdot\sin 49^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iqrqpd8qc8z36w8hj4rpi35mffw991cd28.png)
Using a calculator we can find a and b:
![\begin{gathered} a=1.312 \\ b=1.509 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a5klmbpq3lu86qckfp1h147evy5ohvzlbv.png)
Then the answers for the two boxes are 1.312 and 1.509