The demand equation is given to be:
![p=32-√(0.0001x+1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3bbm4exg93krp78eae760jvqvjbwlcf0dj.png)
where p is the price and x is the number of units sold.
If the price per unit is $14.75, the number of units will be calculated as follows:
![\begin{gathered} p=14.75 \\ \therefore \\ 14.75=32-√(0.0001x+1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jadgn6uzh3bl27w7mbxoacrh4goczz67mm.png)
Subtracting 32 from both sides, we have:
![\begin{gathered} -√(0.0001x+1)=14.75-32 \\ -√(0.0001x+1)=-17.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wv7vm8b0694thwqb4u1r0d3087zosl3ym1.png)
Multiply both sides by -1:
![√(0.0001x+1)=17.25](https://img.qammunity.org/2023/formulas/mathematics/high-school/scsoahwpy51ggb0apy1cl19322gqlx2hzh.png)
Square both sides:
![\begin{gathered} 0.0001x+1=17.25^2 \\ 0.0001x+1=297.5625 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wcfkjeqbd7uwjfz54kuazz8h0w0id64633.png)
Subtract 1 from both sides:
![\begin{gathered} 0.0001x=297.5625-1 \\ 0.0001x=296.5626 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ia1c1cdvdxozkgw7ohsk5v6vbyfykdkp37.png)
Divide both sides by 0.0001:
![\begin{gathered} x=(296.5625)/(0.0001) \\ x=2965625 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kawnntnm3r40c8st75xq1vcxp5v902enho.png)
The number of units sold will be 2,965,625 units.