We have to find the expression for the composition
![g\circ\text{ g\lparen x\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/2emf780y7qaqdeqtvvxyo4754as15ggrlj.png)
Where
![g(x)=(6)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/dcv6gbb5qccbydrhcjq8gw7cdovbs6xium.png)
And express its domain in set notation. We will start by finding the expression for the composition
![g\circ\text{ }g(x)=g(g(x))=g((6)/(x))](https://img.qammunity.org/2023/formulas/mathematics/college/saxjrcxqb7s3uqi8bmfd44gmlulw9qy75l.png)
that is we firsts evaluate the inner functions that in this case is g, now taking as argument y=6/x, we evaluate the outer function that in this case also is g, as follows:
![g\text{ \lparen }(6)/(x))=(6)/((6)/(x))=(6)/(6)=x](https://img.qammunity.org/2023/formulas/mathematics/college/9pdn5bw45mbbbs3bizzbj675f3a7du5o0s.png)
That is, the composition g*g is equal to x, the identity.
Now we will find the domain of g*g:
Note that the domain of a composition is an interception, as follows:
![Domain\text{ }g\circ\text{ g=\textbraceleft Domain of }g\text{ \textbraceright }\cap\text{ \textbraceleft Image of }g\text{ \textbraceright}](https://img.qammunity.org/2023/formulas/mathematics/college/42zwwn0awrp56tvsannsoc2b7px0ij3n4f.png)
Therefore, we have to find the domain and image of g, and intercept both sets. We start with the domain of g_
![Domain\text{ of }g\text{ }=\text{ }\mathbb{R}\text{ - \textbraceleft0\textbraceright}](https://img.qammunity.org/2023/formulas/mathematics/college/th3ac7zartut51zj1t7esvwub4m67erc82.png)
That is all the real numbers except the 0. Now note that the image of g is
![Image\text{ g= }\mathbb{R}\text{ - \textbraceleft0\textbraceright}](https://img.qammunity.org/2023/formulas/mathematics/college/cvh8r0941106g3zhvl1rdbvicbmeuztnom.png)
Finally, the domain of the composition g*g, can be obtained by the formula above:
![Domain\text{ of }g\circ\text{ g=}\mathbb{R}\text{ -\textbraceleft0\textbraceright }\cap\text{ }\mathbb{R}\text{ - \textbraceleft0\textbraceright= }\mathbb{R}\text{ - \textbraceleft0\textbraceright=}(-\infty\text{ },0)\text{ }\cup\text{ }(0,\infty)\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/px99kn3vszcz532lxp9ypb6rubg4la663s.png)
Therefore, the domain of the composition are all the real numbers excluding the 0.
-