How many ways can a person toss a coin 14 times so that the number of heads is between 6 and 9 inclusive?
the formula of combination is equal to
![\text{nCr}=(n!)/(r!(n-r)!)](https://img.qammunity.org/2023/formulas/mathematics/college/3u55od0ht7r8xeg5yov9ulc8iyzo36snex.png)
For r between 6 and 9
For r=6
n=14
substitute
![14\text{C6}=(14!)/(6!(14-6)!)=(14!)/(6!(8)!)=(14\cdot13\cdot12\cdot11\cdot10\cdot9)/(6\cdot5\cdot4\cdot3\cdot2\cdot1)](https://img.qammunity.org/2023/formulas/mathematics/college/45pgy0f7p7f6zg76l8sktx7ed5fke2tepv.png)
14C6=3,003
For r=7
n=14
substitute
![14\text{C7}=(14!)/(7!(14-7)!)=(14!)/(7!(7)!)=(14\cdot13\cdot12\cdot11\cdot10\cdot9\cdot8)/(7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1)](https://img.qammunity.org/2023/formulas/mathematics/college/y99a9hmpbu5c76ccj8juyqlvg4kzeepjjb.png)
14C7=3,432
For r=8
n=14
substitute
![14\text{C8}=(14!)/(8!(14-8)!)=(14!)/(8!(6)!)=(14\cdot13\cdot12\cdot11\cdot10\cdot9)/(6\cdot5\cdot4\cdot3\cdot2\cdot1)](https://img.qammunity.org/2023/formulas/mathematics/college/cv2iydlt7u26set72gl3e2olwbzzvywu0s.png)
14C8=3,003
For r=9
n=14
substitute
![14\text{C9}=(14!)/(9!(14-9)!)=(14!)/(9!(5)!)=(14\cdot13\cdot12\cdot11\cdot10)/(5\cdot4\cdot3\cdot2\cdot1)](https://img.qammunity.org/2023/formulas/mathematics/college/z32yqumecutkwf90weykyflzhqn5izcq4r.png)
14C9=2,002
adds the combinations
3,003+3,432+3,003+2,002=11,440
11,440 ways