To solve the exercise, you can first draw a picture to better understand the statement. So,
Now, in a rectangle, the lengths of the diagonals measure the same. So,
![\begin{gathered} WY=XZ \\ -2x+34=3x-26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vcj3t5dl4bju1mb7nalwp9sf5u2ga9ferk.png)
To solve for x first subtract 34 from both sides of the equation
![\begin{gathered} -2x+34-34=3x-26-34 \\ -2x=3x-60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5bv4jlisuwuu8ae0mesed6qegc4g16okpd.png)
Subtract 3x from both sides of the equation
![\begin{gathered} -2x-3x=3x-60-3x \\ -5x=-60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/beeth25fm2gs0v58byzm7gpwmvc5l1ud2q.png)
Divide by -5 into both sides of the equation
![\begin{gathered} (-5x)/(-5)=(-60)/(-5) \\ x=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/on0umdfnq2ieqgii9nq6svwoqvk0qyy9ds.png)
Finally, replace the value of x in the length of any of the diagonals, for example, the diagonal WY
![\begin{gathered} WY=-2x+34 \\ WY=-2(12)+34 \\ WY=-24+34 \\ WY=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l7jqt5j0ktmvc8wb0sn3d2arwe4gqfm917.png)
Therefore, the length of each diagonal is 10 units.