![h^(\prime)=(4)/(1089\pi)ft\text{ /min}](https://img.qammunity.org/2023/formulas/mathematics/college/4xtuvw6udfs9eqnqbggb7zeskw2fjqe575.png)
STEP - BY - STEP EXPLANATION
What to find?
dh/dt
Given that;
At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 4 cubic feet per minute. The diameter of the base of the cone is approximately three times the altitude.
Since we have that the rate is 4 cubic per minute, then dv/dt = 4 (since v is the volume of the cone at time t.)
The formula for the volume of a cone is
![V=(1)/(3)\pi r^2h---------------(1)](https://img.qammunity.org/2023/formulas/mathematics/college/kym529myhtrozb8jvcazjrmhr3gu1z1kzk.png)
Where r is the radius and h is the height.
We have that, the diameter of the cone is approximately three times the altitude.
That is;
diameter = 3h
But, d = 2r
⇒2r = 3h
⇒ r = 3h/2
Now, we substitute r=3h/2 into equation (1).
![V=(1)/(3)\pi((3h)/(2))^2h](https://img.qammunity.org/2023/formulas/mathematics/college/v8vr401fako8vkk8dtuejg1i7t5bj2m6oj.png)
![=(1)/(3)\pi((9h^2)/(4))h](https://img.qammunity.org/2023/formulas/mathematics/college/6o9zibqkiwrxlpcer9zz84589p76kea3rc.png)
![V=(3)/(4)\pi h^3](https://img.qammunity.org/2023/formulas/mathematics/college/m74do13huyhxfbxvuimuklf5zgc8dfn5ua.png)
Now, differentiate the above with respect to t.
![(dv)/(dt)=(3)/(4)\pi3h^2(dh)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/ubkdjgox087q9w1xmmluk6kdwvxw2dl6sm.png)
Simplify .
![(dv)/(dt)=(9)/(4)\pi h^2(dh)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/l9uugwd5ihoygie35u6v47nt9cafnxvkxe.png)
Make dh/dt subject of formula.
![(dh)/(dt)=(dv)/(dt)*(4)/(9\pi h^2)----------(2)](https://img.qammunity.org/2023/formulas/mathematics/college/o0vwokm3jo9y8juogtd5ityc2qub35dqcs.png)
Recall that, dv/dt = 4 and h=22
Substituting the values into equation (2), we have;
![(dh)/(dt)=4*(4)/(9\pi(22)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/7tko3kapga56dje4o0sx233p4972qax1eg.png)
![=\frac{16}{9\pi\text{ (484)}}](https://img.qammunity.org/2023/formulas/mathematics/college/turrjqeybt4uobzk0crdeqf64wi853vgqq.png)
![=\frac{4}{9\pi\text{ (121)}}](https://img.qammunity.org/2023/formulas/mathematics/college/t27eatt881kmsy6prp00wslz6teknfyawg.png)
![=(4)/(1089\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/9gk3nrtp7n667sy63rpcfculxoespoqo3k.png)
Therefore, h' = dh/dt = 4/1089π ft/min.