Given:
object size: 1 cm
object distance (do): 10 cm
mirror focal length (f): 15 cm
Required:
Image distance (di),
magnification
image characteristics.
Equations needed:
![\begin{gathered} (1)/(d_i)+(1)/(d_o)=(1)/(f) \\ \text{magnification}=-(d_i)/(d_o) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wokisi1ixklp197fudql25ujxs3pz47aan.png)
Solution:
![\begin{gathered} (1)/(d_i)+(1)/(10)=(1)/(15) \\ (1)/(d_i)=(1)/(15)-(1)/(10) \\ (1)/(d_i)=(2)/(30)-(3)/(30) \\ (1)/(d_i)=(-1)/(30)_{} \\ d_i=-30\text{ cm} \\ \\ \text{magnification}=-(-30)/(10)=3 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/opo27g8qp0r02yty4qz2tugpunrdutmt3w.png)
Location: 30 cm "inside" the mirror (di = -30)
Orientation: Upright (magnification > 0)
Size: 3 cm (object size multiplied by magnification)
Type: virtual image (di < 0)