It is given that the line segment AB is dilated to give another line segment A'B'.
Since it is a dilation, the length of the image will be a multiple of the length of the preimage.
To find the scale factor, divide the length of the image by the length of the preimage.
Recall that the length of a line segment with endpoints (a,b) and (c,d) is given as:
![\sqrt[]{(c-a)^2+(d-b)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/yc15gk3rmrcypoo74m5gxj09am5c7n7w73.png)
To find the length AB of the preimage, substitute the coordinates (a,b)=(9,4) and (c,d)=5,-4) into the formula:
![AB=\sqrt[]{(5-9)^2+(-4-4)^2}=\sqrt[]{(-4)^2+(-8)^2}=\sqrt[]{16+64}=\sqrt[]{80}](https://img.qammunity.org/2023/formulas/mathematics/college/b6n6cm1i8sqlujqkv3k877rp0sqrmb4dc4.png)
To find the length A'B' of the image, substitute the coordinates (a,b)=(6,3) and (c,d)=(3,-3) into the formula:
![A^(\prime)B^(\prime)=\sqrt[]{(3-6)^2+(-3-3)^2}=\sqrt[]{(-3)^2+(-6)^2}=\sqrt[]{9+36}=\sqrt[]{45}](https://img.qammunity.org/2023/formulas/mathematics/college/x153b6xm9i257emibvj6aqemilwaho2qnj.png)
Divide the length of the image by the length of the preimage to calculate the scale factor:
![(A^(\prime)B^(\prime))/(AB)=\frac{\sqrt[]{45}}{\sqrt[]{80}}=\sqrt[]{(45)/(80)}=\sqrt[]{(9)/(16)}=\frac{\sqrt[]{9}}{\sqrt[]{16}}=(3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/ni8efqmuecchi61inccoed6jbwmxr8ek2x.png)
Hence, the scale factor is 3/4.
The answer is 3/4.