To answer this question we will use the following property:
![|a|>b>0\text{ if and only if }a>b\text{ or }a<-b.](https://img.qammunity.org/2023/formulas/mathematics/college/bhlrxpm5jw5xn15fuf30bc4otf0mpxljud.png)
Subtracting 6 from the given inequality we get:
![\begin{gathered} 2|4t-1|+6-6>20-6, \\ 2|4t-1|>14. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kqqr2ftb2xz14twmmk8nnfa2fdtgr952ln.png)
Dividing the above inequality by 2 we get:
![\begin{gathered} (2|4t-1|)/(2)>(14)/(2), \\ |4t-1|>7. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n7z9ghm4q90x6obovjh11nd5oqdawobbbp.png)
Then:
![4t-1>7\text{ or }4t-1<-7.](https://img.qammunity.org/2023/formulas/mathematics/college/bwxcdhoec5nqda72x2iwti1hbz2wyr94cu.png)
Solving the above inequalities we get:
1)
![4t-1>7.](https://img.qammunity.org/2023/formulas/mathematics/college/dssw2pv7r9kbw7r57bpy5zd4skc028scrf.png)
Adding 1 to the above inequality we get:
![\begin{gathered} 4t-1+1>7+1, \\ 4t>8. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ntm1db23cty74r202jt37uly30c1oouute.png)
Dividing the above by 4 we get:
![\begin{gathered} (4t)/(4)>(8)/(4), \\ t>2. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qo79cbs577gizu21d8cw8l8eqhi45a0j0o.png)
The above inequality in interval notation is:
![(2,\infty).](https://img.qammunity.org/2023/formulas/mathematics/college/k5tgnpgkrtn41vne0emdmixr6rsx6ufmoj.png)
2)
![4t-1<-7.](https://img.qammunity.org/2023/formulas/mathematics/college/sb9aqpb2etedz9cw5ipoi1usxsrm7kjky1.png)
Adding 1 to the above inequality we get:
![\begin{gathered} 4t-1+1<-7+1, \\ 4t<-6. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lrv1tjdnub9wqg8jj78g90amiuta3o9zea.png)
Dividing the above result by 4 we get:
![\begin{gathered} (4t)/(4)<-(6)/(4), \\ t<-(3)/(2). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t4dnj34er5mkpbvfphc9f4y9914vr2v5kk.png)
The above inequality in interval notation is:
![(-\infty,-(3)/(2)).](https://img.qammunity.org/2023/formulas/mathematics/college/fmjdzuh015p216pgloopu7vnbk20zt13up.png)
Answer:
![(-\infty,-(3)/(2))\cup(2,\infty).](https://img.qammunity.org/2023/formulas/mathematics/college/uqlps7sjg016wvsk5ozslndlq4a37fx1o2.png)