Answer:
![\begin{gathered} x_1=4+\sqrt[]{11} \\ x_2=4-\sqrt[]{11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dgmcf6jhtqjmgsmnyicwdo8a7jpwvfmai7.png)
Explanation:
Solve the following quadratic completing the square:

Keep x terms on the left and move the constant to the right side:

Then, take half of the x-term and square it.

Now, add this result to both sides of the equation:

Rewrite the perfect square on the left.

Take the square root of both sides:
![\begin{gathered} \sqrt[]{(x-4)^2}=\pm\sqrt[]{11} \\ x-4=\pm\sqrt[]{11} \\ x=\pm\sqrt[]{11}+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gb0zskz8b127avcygngx255qrfawek8vnm.png)
Hence, the two solutions of the equation are:
![\begin{gathered} x_1=4+\sqrt[]{11} \\ x_2=4-\sqrt[]{11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dgmcf6jhtqjmgsmnyicwdo8a7jpwvfmai7.png)