In this problem
we have that
sin(theta) is positive and cos(theta) is negative
That means
the angle theta lies on the II quadrant
Remember that
![\cot (\theta)=(\cos(\theta))/(\sin(\theta))](https://img.qammunity.org/2023/formulas/mathematics/college/a25sjgbg0vcgco5o35ui1k59nibdls7xo9.png)
Find out the value of cos(theta)
![\sin ^2(\theta)+\cos ^2(\theta)=1](https://img.qammunity.org/2023/formulas/mathematics/college/ympxogo8hoeg81r52btp5ikjo8dsvrof06.png)
substitute the given value
![(\frac{\sqrt[]{48}}{8})^2+\cos ^2(\theta)=1](https://img.qammunity.org/2023/formulas/mathematics/college/829w7jtaro37b5j5i98i06dkki2llkf3e5.png)
![\cos ^2(\theta)=1-(48)/(64)](https://img.qammunity.org/2023/formulas/mathematics/college/ah7zq0zypggb3vt6593p0qiui7racjp8ug.png)
![\begin{gathered} \cos ^2(\theta)=(16)/(64) \\ \cos ^{}(\theta)=-(4)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n0k340tgtta8w5943aj1rwca75f5n4xddf.png)
Find out the value of cot(theta)
substitute given values
![\cot (\theta)=-\frac{4}{\sqrt[\square]{48}}](https://img.qammunity.org/2023/formulas/mathematics/college/iuek7r7stmc6jjezncdm45q4dw0i12d7wo.png)
simplify
![\cot (\theta)=-\frac{4}{\sqrt[\square]{48}}\cdot\frac{\sqrt[]{48}}{\sqrt[]{48}}=-\frac{4\sqrt[]{48}}{48}=-\frac{\sqrt[]{48}}{12}=-\frac{4\sqrt[]{3}}{12}=-\frac{\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/aamo3jz696k0kmcilbbp90ne943l3tap08.png)
Find out the angle theta
using a calculator
angle in II quadrant
theta=120 degrees
Convert to radians ---->