Step 1
Given; What is the equation of the line that passes through (5, 2) and is
perpendicular to y =
10x + 7?
Step 2
The slope of the given line is;
![\begin{gathered} m=10 \\ since,\text{ when we compare y=mx+b} \\ m=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wmnrnk96p6zg7791jehv1yrhp0uylir9dc.png)
Slope of perpendicular lines have the following relationship;
![\begin{gathered} m_1=-(1)/(m_2) \\ 10=-(1)/(m_2) \\ m_2=-(1)/(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jfzufk5tg203pexvfxv7on249b6l8t3o9n.png)
Therefore the required equation will be in the form of;
![\begin{gathered} y=-(1)/(10)x+b \\ y=2 \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oddzta8x6ga5nziblipldos0jru5snapbj.png)
Find b, the y-intercept
![\begin{gathered} 2=-(1)/(10)(5)+b \\ 2=-(1)/(2)+b \\ 4=-1+2b \\ 2b=5 \\ b=(5)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6xpstqblgahhzgjeifanfbs4ekta8mgcif.png)
Thus the answer will be; Option B
![\begin{gathered} y=-(1)/(10)x+(5)/(2) \\ \\ \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iz3euum2l6xj4z8p80cckvllpk7avkj8x1.png)