Answer:
Explanation:
First of all, we know that
![\sin (\pi)/(4)=\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/m0t25ih3rvrze07w9h3ll18cu58dj0lsg5.png)
And knowing the unit circle, we know that the sine takes negative values in 3rd and 4th quadrants. Therefore, from the above value of the angle, If we go π radians counterclockwise, we encounter negative values of sine; hence,
![\sin \lbrack(\pi)/(4)+\pi\rbrack=-\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/cyfkztc5k6xn3ydde4f1w7lt3euzxw6mvc.png)
![\rightarrow\sin (5\pi)/(4)=\frac{-\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/9khamejscesapiqtpg7s4ma1q7synv38x7.png)
The second value of the angle that yields the above value for sine is found by adding π/2 radians to the angle above (we are now in the 4th quadrant)
![\sin (5\pi)/(4)+(\pi)/(2)=-\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/ei4qyv3lr2r9ax0vxkwwj0v9dv18cvxov9.png)
![\rightarrow\sin (7\pi)/(4)=-\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/pkp7uiaxxythje1x9yuhk4erkk0oyow4df.png)
Hence, the two values of angles between 0 and 2π are 5π/4 and 7π/4.