Step-by-step explanation
Since we have the given sides, we can apply the Pythagorean Theorem in order to obtain the needed distance:
![Hypotenuse^2=Larger\text{ side}^2+Smaller\text{ side}^2](https://img.qammunity.org/2023/formulas/mathematics/college/hjrmqin5mpn5ye220cjhpp4u6uh9ww9dv7.png)
Plugging in the terms into the expression:
![20^2=Larger\text{ side\textasciicircum2+12}^2](https://img.qammunity.org/2023/formulas/mathematics/college/75ns0fztywo6xnzgoqojg9mj2holb8wkqv.png)
Subtracting 12^2 to both sides:
![20^2-12^2=Larger\text{ side}^2](https://img.qammunity.org/2023/formulas/mathematics/college/ldmsl0fav7defjgmxsqoi9rpxrdyuqpsn0.png)
Computing the powers:
![400-144=Larger\text{ side}^2](https://img.qammunity.org/2023/formulas/mathematics/college/6zte7i21b3tlh3ctbav2owv20je0g02sv1.png)
Subtracting numbers:
![256=Larger\text{ side}^2](https://img.qammunity.org/2023/formulas/mathematics/college/vlnri2w3waag6ecgt78xezwgvc76dlf38d.png)
Applying the square root to both sides:
![√(256)=Larger\text{ side}](https://img.qammunity.org/2023/formulas/mathematics/college/o7adenyt8krliocx4n8we3zoxpgp5j3bju.png)
Computing the root:
![16=Larger\text{ side}](https://img.qammunity.org/2023/formulas/mathematics/college/938orykouu9pmmlxqzxa3lppdew1t3ttzx.png)
Switching sides:
![Larger\text{ side =16}](https://img.qammunity.org/2023/formulas/mathematics/college/upl3iigtihqr9h08vuw1cchbcbudl3tn12.png)
In conclusion, the solution is 16ft