178k views
5 votes
Differentiatey = 3x√x⁴-5

User Xenvi
by
3.2k points

1 Answer

2 votes

Given:


y=3x√(x^4-5)

Required:

We need to differentiate the given expression.

Step-by-step explanation:

Consider the given expression.


y=3x√(x^4-5)
y=3x(x^4-5)^{(1)/(2)}

Differentiate the given expression with respect to x.


Use\text{ }(uv)^(\prime)=uv^(\prime)+vu^(\prime).\text{ Here u=3x and v=}(x^4-5)^{(1)/(2)}.
y^(\prime)=3x((1)/(2))(x^4-5)^{(1)/(2)-1}(4x^3)+(x^4-5)^{(1)/(2)}(3)
y^(\prime)=\frac{3x(4x^3)}{2\left(x^4-5\right)^{(1)/(2)}}+3(x^4-5)^{(1)/(2)}
y^(\prime)=\frac{6x^4}{\left(x^4-5\right)^{(1)/(2)}}+3(x^4-5)^{(1)/(2)}
y^(\prime)=\frac{6x^4}{\left(x^4-5\right)^{(1)/(2)}}+\frac{3(x^4-5)^{(1)/(2)}(x^4-5)^{(1)/(2)}}{(x^4-5)^{(1)/(2)}}
y^(\prime)=\frac{6x^4}{\left(x^4-5\right)^{(1)/(2)}}+\frac{3(x^4-5)}{(x^4-5)^{(1)/(2)}}
y^(\prime)=\frac{6x^4}{\left(x^4-5\right)^{(1)/(2)}}+\frac{3x^4-15}{(x^4-5)^{(1)/(2)}}
y^(\prime)=\frac{6x^4+3x^4-15}{\left(x^4-5\right)^{(1)/(2)}}
y^(\prime)=\frac{9x^4-15}{\left(x^4-5\right)^{(1)/(2)}}
y^(\prime)=\frac{3(3x^4-5)}{\left(x^4-5\right)^{(1)/(2)}}
y^(\prime)=(3(3x^4-5))/(√(x^4-5))
y^(\prime)=(3(3x^4-5))/(√(x^4-5))*(√(x^4-5))/(√(x^4-5))
y^(\prime)=(3(3x^4-5)√(x^4-5))/(x^4-5)

Final answer:


y^(\prime)=(3(3x^4-5)√(x^4-5))/(x^4-5)

User Aahnik
by
3.7k points