We know that
• The mean is 200 pounds.
,
• The standard deviation is 25 pounds.
,
• The random sample is 35.
First, let's find the Z value using the following formula
![Z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/sv72d3baryltp7s92ka7mqqorx2970ht60.png)
Let's replace the mean, the standard deviation, and x = 210.
![Z=(210-200)/(25)=(10)/(25)=0.4](https://img.qammunity.org/2023/formulas/mathematics/college/bh27ieew8uylqtioktuf9ngfpfwnvh8oqr.png)
Then, using a p-value table associated with z-scores, we find the probability
![P(x>210)=P(Z>0.4)=0.1554](https://img.qammunity.org/2023/formulas/mathematics/college/gnp1v1aweojph7jasvlcbx1gd0adudo3hg.png)
Therefore, the probability is 0.1554.
The table used is shown below